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Abstract—Pervasive mobile devices and their advances in
sensing and networking have led to an emerging mobile sensing
paradigm. The diversity of mobile users and the openness of
sensing systems raise several crucial concerns for users’ privacy,
data quantity, and quality. Although different aspects of these
issues were addressed separately in existing researches, there
is still a need to provide a holistic solution for secure and
privacy-aware mobile sensing. In this paper, we propose a
privacy-aware and trustworthy mobile sensing scheme with fair
incentives. Leveraging group signature, (partial) blind signature,
and limited number of pseudonyms technologies, our scheme
enables well-behaved users to contribute their data anonymously,
and prevents both greedy and malicious users from abusing
the privacy protection. Moreover, we design a fair incentive
scheme to stimulate users to contribute high-quality data, based
on the data quality and the reputation feedback level. Security
analysis demonstrates that our proposed scheme achieves the
security goals. Extensive evaluation results are presented which
demonstrate the effectiveness and efficiency of our scheme.

Index Terms—mobile sensing, privacy preservation, trustwor-
thiness, fair incentive.

I. INTRODUCTION

Recent years have witnessed a rapid proliferation of mobile

devices such as smartphones and tablets. With the advances

of sensing and communication technologies, these mobile de-

vices are generally equipped with various powerful embedded

sensors (e.g., camera, GPS) and have enhanced communi-

cation capacities (e.g., WiFi, 4G, and Bluetooth). Due to

these advancements, mobile sensing has emerged as a new

sensing paradigm. Compared with the traditional static sensor-

based wireless sensing, mobile sensing has exhibited numerous

advantages such as lower deployment cost and better spatial-

temporal coverage. With personal mobile devices, users can

collect various sensing data from nearby environments, which

fosters many promising applications, including environmental

monitoring, assistive healthcare, and intelligent transportation.
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However, we observe three crucial issues that might impede

the large-scale deployment of these applications. First, privacy

disclosure is a potential obstacle that prevents users from

participating in sensing tasks, as their contributed data may

reveal some sensitive information such as identity, location, or

health status [2]. Therefore, there is an inherent necessity to

provide users a privacy-aware and anonymous mobile sensing

scheme. The second issue lies in the design of incentives

in a fair manner to attract more user participation, which

can provide sufficient sensing data and improve the quality

of sensing service. However, a user would be reluctant to

take sensing tasks unless desirable incentives are provided as

compensation for their energy (e.g., battery) consumption. The

third issue is the data reliability. In practical mobile sensing

applications, due to the massive and open involvement of

diverse participants, it is hard to guarantee that all participants

would submit accurate and reliable sensing data.

There have been some efforts devoted to relevant researches

such as the privacy protection technologies proposed for

anonymous data collection ([6], [12]), incentive schemes

[19], and some trust/reputation management systems ([8],

[15]). However, these solutions only address these issues

separately, rather than addressing all of them collectively.

Although privacy-aware incentives and anonymous reputation

systems were further studied, they still fail to consider these

issues in a holistic perspective. It is nontrivial to address these

issues simultaneously, as some combined issues may bring

new challenges, such as the inherent conflict between user

privacy and data trustworthiness, the potential abuse attack

in privacy-aware incentives, and the fairness of incentives. In

these cases, how to protect the privacy of benign users and

prevent malicious users from breaking the data trustworthiness

and fairness of incentives is much more challenging.

In this paper, we propose a practical integrated scheme pro-

viding privacy-preserving and trustworthy mobile sensing with

fair incentives. Compared with previous researches ([10], [14],

[17], [18]), our scheme is applicable to the multiple-report

scenario1 which is rarely considered except for [11], [16].

However, [11] requires a trusted authority for authentication,

and large overhead is induced when generating anonymous

report tokens. In contrast, we adopt group signature for anony-

mous user authentication, where the group manager is not fully

trusted. A limited pseudonym-based approach is crafted to let

participants anonymously submit their reports while prevent-

1The sensing task requires each participant to submit multiple sensing data.
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ing malicious users from submitting more reports. Inspired

by [15], we integrate an anonymous reputation management

scheme with our new system model, enabling privacy-aware

trust assessment and reputation update at different entities.

Particularly, based on the data quality and reputation feedback,

a fair payment allocation method is further developed to

reward participants. Finally, we provide flexible revocation

methods to evict participants from tasks or the whole system.

The remainder of this paper is organized as follows. Section

II and Section III review some related work and preliminaries.

We present our scheme in Section IV. Security analysis and

performance evaluations are shown in Section V and Section

VI, respectively. Finally, Section VII concludes this paper.

II. RELATED WORK

For general privacy protection, Shin et al. [13] first proposed

AnonySense for mobile sensing systems. It provides frame-

works for anonymous tasking and reporting leveraging mix

network and k-anonymity technology. However, this scheme

lacks provable privacy guarantees. Considering the privacy and

incentive issues simultaneously, Zhang et al. [18] first solved

this problem with pseudonym, encryption and hash function.

In [10], two privacy-aware incentive schemes were designed to

reward participants with credits in single-report tasks. The first

scheme relies on a Trusted Third Party (TTP) while the second

adopts blind signature and commitment techniques to preserve

privacy. These two schemes were further improved in [11]

which supports both single-report and multiple-report tasks.

Son et al. [14] realized privacy-preserving mobile incentives

with efficient pseudonym verification. Particularly, duplicate

data with different pseudonyms can be detected by revealing

the user’s private key. Besides these, privacy-aware auction

[9] is also studied as incentive mechanism. However, none of

these solutions consider the trustworthiness of sensed data.

To improve the quality of sensed data without compro-

mising user’s privacy, [8] assigned each participant multiple

pseudonyms and relied on a TTP to transform the reputation

between multiple pseudonyms of the same participant. A

similar solution IncogniSense [5] was proposed by using blind

signatures and cloaking techniques. As an improvement, Wang

et al. [15] proposed ARTSense, which contains a privacy-

aware trust assessment and an anonymous reputation protocol

without the existence of TTP. Nevertheless, no incentives

are provided in these solutions. Although Gisdakis et al. [7]

proposed a secure and accountable mobile sensing system

that preserves the user privacy and provides incentives based

on the Shapley value. However, it lacks a detailed reputation

evaluation method suitable for the multi-report scenario.

III. PRELIMINARIES

A. System Architecture

In this paper, we consider our mobile sensing system

consisting of the following entities.

1) Data collectors (DCs): organizations or individuals who

create sensing tasks by specifying some task require-

ments, such as the specific sensing area/time, the reward

budget, and other requirements.

2) Sensing servers (or servers): entities receiving tasks from

the DCs and publishing tasks to the users. After a task

finishes, servers will give rewards and feedback to the

users, based on the evaluation of sensing data.

3) Participants: mobile users2 collect sensing data with

their mobile devices for requested tasks.

4) Group manager (GM): entity acting for user registration,

reputation management, and request tokens issuance.

5) Trusted pseudonym authority (TPA): an authority who

issues valid pseudonyms to authorized participants for

their reports and receipts submission.

Fig. 1. System architecture

The system architecture is illustrated in Fig. 1. First, the DCs

create sensing tasks and then forward them to the servers.

Subsequently, the servers publish these tasks to the group

manager and mobile users (Step 1). In this paper, we consider

the DCs and the servers the same party for simplicity, as DCs’

privacy is not under our consideration.

If a mobile user wants to join a task, he/she must register

with the group manager and obtain relevant task request

tokens (Step 2). After being authenticated (Step 3), the user

can request corresponding pseudonyms from the TPA, with

which the sensing reports can be later submitted to the server

anonymously. For each report received, the server evaluates its

reliability and issues a receipt to the participant (Step 4). After

completing a task, the participant submits all his/her receipts

to the server and gets corresponding rewards. Meanwhile,

a reputation feedback is also returned (Step 5). Finally, the

participant submits the feedback to the group manager using

his/her real identity for reputation update (Step 6).

B. Threat model and assumptions

Threats to privacy. Curious group manager may want to

know which tasks the user is interested in. The server may be

curious about the real identity of participants and whether two

tasks/reports are taken/submitted by the same participant.

2In this paper, we use participant and user interchangeably.



Threats to incentives. Greedy participants may try to earn

more rewards by submitting extra reports. Some malicious

participants may try to use tokens obtained from different tasks

interchangeably, use a token twice or usurp others’ tokens.

Threats to trustworthiness. Unauthenticated users may con-

tribute forged data to the server. For legitimate participants,

they may exhibit malicious behaviors, including submitting

false sensing data randomly for certain purposes or collusively

send the same false data to disrupt the sensing applications.

Assumptions. Servers and the group manager are “honest
but curious”, indicating that they will follow the designated

protocols, but are curious to infer user’s privacy. Moreover, the

communications between users and servers are anonymized by

Mix Networks or IP and MAC address recycling techniques.

C. Design goals

The following are our design goals:

G1 Privacy-preserving participation: Group manager and

servers cannot infer if a given participant has request-

ed/accepted a specific task, or whether two or more tasks have

been accepted by the same participant.

G2 Fair and privacy-aware incentives: Participants should

be rewarded fairly based on their data quality in a privacy-

aware manner. Malicious users cannot increase their rewards

by abusing pseudonyms, reusing, or stealing tokens.

G3 Data trustworthiness. Participants should be authen-

ticated before task assignment. Additionally, an anonymous

reputation assessment scheme should be built to mitigate data

trustworthiness threats.

D. Cryptography and Reputation Primitives

Group signature [3]. A group signature scheme allows a

member of a group to anonymously sign messages on behalf of

the group. Specifically, the key generation algorithm KeyGen()

outputs a public verification key vk and a group secret key

gsk. A new member i will obtain a member secret key mski
after joining the group. Any group member can sign a message

m with mski and others is able to verify the signature with vk.

If necessary, the group manager can identify, trace, and revoke

the signer with gsk. Group signature has two properties:

anonymity (except for the group manager) and traceability

(only for the group manager), which captures the security

requirements in our system.

Blind signature and partial blind signature. Blind signature

[4] enables a user to obtain a signature from a signer without

knowing the message m to be signed. Specifically, the user

chooses a blinding factor b relatively prime to the signer’s

public modulo Q, and computes m′=m·bemod Q (blind RSA

signature), where e is the signer’s public key. The signer signs

on m′ with k and sends the signature {m′}k to the user. By

computing {m}k = ({m′}k · b−1)mod Q, the user can obtain

the real signature. Besides blindness and unlinkability, the user

cannot forge a valid signature from {m′}k for another different

message m. In contrast, partially blind signature [1] enables

the signer to add some public information in the signature,

while others are similar to the blind signature.

Trust and reputation. Following the definition in [15]. We

use “trust” and “reputation” to assess the sensing reports and

the participants, respectively. Particularly, “reputation level” is

employed for privacy protection, which is a discrete approxi-

mation deduced from the participant’s reputation.

IV. THE PTISENSE SCHEME

In this section, we present our scheme PTISense, an in-

tegrated scheme achieving the goals on “Privacy Preserva-

tion”, “Data Trustworthiness” and “Fair Incentives” for mobile

Sensing. The key challenge to be addressed is how to protect

the privacy of well-behaved participants while preventing

misbehaving users from launching abuse attacks. We adopt

the idea of limited number of pseudonyms to avoid users sub-

mitting more reports. In the whole process, blind signature and

partial blind signature are employed to delink the correlation

between data. Moreover, a fair incentive is designed to reward

users in different degrees. To tackle malicious participants,

we provide two revocation methods based on the anonymous

reputation evaluation. Our entire scheme consists of seven

phases for each task group, and the detailed interactions

between our system entities are as follows.

A. Initialization

In this phase, a certificate authority first delivers a key pair

to the server and the group manager, respectively. Moreover,

the group manager performs KeyGen() to generate a group

public key vk and a group secret key gsk.

The server groups all tasks (e.g., indexed as 1, 2, . . . ,M
in the order of their reception time) received from the DCs.

Then, the server publishes M tasks to the mobile users.

B. Participant registration

If a participant Pi wants to take task Tj for the first time,

he/she must register with the group manager and obtain mski.
Then, Pi needs to send some private information and acquire

the corresponding task request token. Using task request token

is to let the server anonymously authenticate the legitimacy of

users and determine whether to authorize users their requested

tasks. In this paper, a task request token is constructed by

binding the user’s identity, reputation R(Pi), reputation level

L(Pi), and the blinded task ID. Specifically, Pi first computes

the blinded task ID BTj = Tj · bpkGMmod Q using the

group manager’s public key pkGM and then sends a task token

request (TTR) to the group manager with his/her real identity.

The group manager maintains a reputation table for users

with a preset initial reputation. After receiving TTR, the

group manager first derives h1
i =H(Pi|R(Pi)|BTj |ρ), h2

i =
H(Pi|BTj), where H is a one-way hash function and ρ is

a nonce. Then, based on its blind signature on BTj (skGM
is the signing/private key), Pi’s task request token for Tj is

constructed as τ ji ={h1
i , h

2
i , {BTj}skGM

, L(Pi)}skGM
.

C. Participant authentication and task assignment

To prevent malicious users from using tokens inconsistent

with the requested task, the actual task ID should be revealed



to the server in this phase. Specifically, Pi generates a group

signature {b}mski , which is sent along with b, τ ji , and Tj .
Specifically, Pi generates a random pseudonym p0i and sends

a anonymous task request �i= 〈p0i , Tj , {b}mski , b, τ ji 〉 to the

server. Upon receiving �i, based on b and vk, the server can

verify {b}mski anonymously. If it succeeds, Pi is considered

legitimate. To further verify τ ji , the server performs:

1) It verifies the authenticity of τ ji by checking the signa-

ture of the group manager with his/her public key pkGM .

2) It extracts {BTj}skGM
from the token and obtains

{Tj}skGM
by removing the blinding factor b.

3) It verifies {Tj}skGM
and ensures the correctness of τ ji .

If all steps succeed and τ ji has not been used, the token

is considered authentic and correct. Next, the server extracts

L(Pi) from τ ji and decides whether L(Pi) satisfies the task

requirement. If it satisfies, τ ji is stored and tagged as ap-
proved to prevent token reuse. Meanwhile, the server computes

h3
i = H(h2

i |nTj + 1|1) and returns an approval message

Ai = 〈{h1
i }skss , {h3

i }skss , {Tj |L(Pi)}skss〉, where nTj is the

number of reports required by Tj , and h3
i is used to request

pseudonyms. Conversely, {h1
i |0}skss is returned to Pi.

D. Report submission and trust evaluation
Before submitting reports, Pi needs to get nTj + 1

pseudonyms from the TPA. Specifically, Pi sends a pseudonym

request 〈Pi, BTj , nTj+1, {h3
i }skss〉 to the TPA. After verifying

{h3
i }skss , the TPA returns pseudonyms p1i , p

2
i , . . . , p

nTj+1

i .
With the obtained pseudonyms, Pi can submit reports for

Tj . Particularly, each report is submitted anonymously as Rk=
〈pki , Tj , {Tj |L(Pi)}skss , Dk

i 〉, (k = 1, 2, . . . , nTj ), where Dk
i

is the kth data. {Tj |L(Pi)}skss is included for later report trust

evaluation. For each sensing report received, the server first

verifies the validity of the pseudonym pki , and then validates

{Tj |L(Pi)}skss and ensures that the task ID in it is Tj .
If both checks are passed, the server then assesses the trust

of each report. Regarding the trust assessment approach, we

resort to [15] which evaluates the report in a comprehensive

perspective. First, the basic trust of a report Rk is computed

based on the reputation level L(Pi) and some contextual

factors (e.g., time/location). Then, its final trust can be de-

rived by further considering the similarity of data submitted

by different participants. Unlike [15], our trust assessment

and reputation update are performed at two different entities

instead of the single server. Moreover, in our multiple-report

scenario, reports for a particular task Tj are further divided into

nTj collections, and the data similarity for a certain report is

computed based on one of these collections.
Let TF (Rk) denote the final trust of a report Rk. After

deriving TF (Rk), the server can obtain a feedback level lf (Rk)
by comparing TF (Rk) with L(Pi). Generally, a positive feed-

back is set when TF (Rk) > L(Pi) and a negative feedback

otherwise. Moreover, two reports with similar gaps would have

the same feedback level, such that the server cannot associate

lf (Rk) with the related report when later submitting receipts.
After receiving Rk, the server issues a receipt RRk

to Pi,
which can be used to redeem rewards later. Particularly, to

achieve the distinguishability and unlinkability of receipts, we

adopt partial blind signature, in which Tj is the common infor-

mation shared by the user and the server. Specifically, Pi com-

putes αk = H(h1
i |Tj |k) as the receipt identifier and obtains

the partial blind signature {αk, Tj}skss from the server. Mean-

while, the server sends {{Tj |L(Pi)}skss |[lf (Rk)]pkss}skss to

Pi. Based on this, the receipt RRk
is as follows:

RRk
=〈Tj , {αk, Tj}skss , {{Tj |L(Pi)}skss |[lf (Rk)]pkss}skss〉.

(1)

E. Receipt submission and user remuneration

When the server announces the completion of task Tj , each

participant can submit all receipts he/she obtained. Specifical-

ly, Pi sends 〈pnTj
+1

i , h1
i , (αk, RRk

)k=1,...,nTj
〉 to the server.

Subsequently, the server does some verifications:

1) It verifies the validity of p
nTj

+1

i and {αk, Tj}skss ,

ensuring that Pi is authorized and has submitted nTj

reports for task Tj .
2) It checks each αk = H(h1

i |Tj |k) to ensure that these

receipts are really issued to Pi. Anyone who steals

other’s receipts (without h1
i ) cannot pass the verification.

If both checks succeed, the server stores and invalidates αk
to avoid receipt reuse. Then, it decrypts [lf (Rk)]pkss , (k =
1, . . . , nTj ) and gets lf (Rk), based on which the average

feedback lf can be computed. Eventually, the server obtains

the average report trust of Pi by calculating TF = lf +L(Pi).
To realize fair incentives, we enable participants with higher

report trust to earn more rewards. Moreover, different strate-

gies are adopted to reward positive-feedback participants SP
and negative-feedback participants SN , respectively. Given the

task budget BTj , the reward distributed to each participant

Pi ∈ SN is

ri =
TF (Pi, Tj)∑

Pk∈P TF (Pk, Tj)
·BTj · elf (Pi,Tj)·ψ, (2)

where ψ is an amplification factor to increase the effect of

the negative feedback on the reward allocation. Obviously, the

reward paid to negative-feedback participant is less than their

real contribution, which can be regarded as a punishment.

For each participant Pi′ ∈ SP , the reward paid is

ri′ =
TF (Pi′ , Tj)∑

Pk∈SP
TF (Pk, Tj)

· (BTj −
∑

Pi∈SN

ri). (3)

Additionally, the server also returns Pi a reputation update

token UTj =〈Tj , {H(h1
i |lf )}skss , {[lf ]pkGM }skss〉 for task Tj .

F. Reputation update

In this phase, Pi needs to return feedback informa-

tion to the group manager for reputation update as long

as he/she requested tasks. Specifically, upon receiving

UTj , Pi sends a “blinded” reputation token UBTj =
〈BTj , {H(h1

i |lf )}skss , {[lf ]pkGM
}skss〉 with his/her real iden-

tity. The group manager verifies the signature of the server,

and obtains lf after decryption. Subsequently, it verifies that

H(Pi|R(Pi)|BTj |ρ|lf ) = H(h1
i |lf ), which prevents users



from stealing update tokens. After successful verification, the

group manager updates P ′
i s reputation based on lf . Moreover,

it stores UBTj and tags it as used to prevent token reuse.

Conversely, if Pi is not authorized to Tj , he/she also needs

to return a request feedback Fi=〈Pi, BTj , {h1
i |0}skss〉 to the

group manager. Upon receiving Fi, the group manager verifies

{h1
i |0}skss and checks if the task request is indeed rejected by

comparing H(Pi|R(Pi)|BTj |ρ)|0 with h1
i |0. In this case, the

malicious participant cannot act as a new user (i.e., with the

initial reputation) once he/she has been assigned a task.

G. Participant eviction

To further improve the data trustworthiness, PTISense pro-

vides countermeasures to tackle users with low reputations.

In the initialization phase, the system sets a reputation

level threshold, below which the participant is considered

unreliable and should not be assigned any task. Specifically,

after successful verification of τ ji , the server extracts L(Pi)
and checks if L(Pi) is less than the threshold. If it satisfies,

the server will deliver {b}mski to the group manager who

can open the signature with gsk and reveal the identity of

Pi. Finally, the participant will be added to the blacklist and

cannot obtain any task request token from the group manager.

However, some reputation-qualified participants may submit

low-quality data occasionally due to certain motivations. To

mitigate this, PTISense can identify these participants with

the cooperation of TPA. Specifically, once the trust of a

report is detected lower than the preset trust threshold ε, the

server will send its pseudonym to the TPA. TPA retrieves

other pseudonyms and sends them to the server. Hence, the

participant utilizing these pseudonyms will not get any receipt.

V. SECURITY ANALYSIS

In this section, we show that PTISense can achieve our

defined goals G1−G3.

Requirement 1. The group manager and the server can
neither associate the participant ID with his/her requested
tasks (submitted reports) nor link multiple tasks (reports)
accepted (contributed) by the same participant, as long as
the two entities do not collude with each other.

Analytical validation. Although the participant’s real ID is

included in TTR, the exact task ID is blinded with b. Given

two different tasks, the group manager cannot identify if they

are requested by the same participant. In the task assignment

phase, a participant can get authenticated anonymously via

group signature. Although the task ID is disclosed to the

server, it is impossible to link tasks to the user’s real identity or

link multiple tasks requested by the same participant, as long

as there is no collusion between group manager and server.

In the report submission phase, although L(Pi) is included

in the report, the server cannot deduce any linkage between

reports with the same L(Pi), as different participants may have

the same reputation level. Moreover, the server only knows

which tasks the receipts are issued for, but cannot link a user

to the contributed reports due to the partial blind signature.

Requirement 2. A participant can neither use the receipts
of task Ti to earn rewards from another task Tj nor use the
receipts of a task multiple times to earn more rewards.

Analytical validation. Recall that the receipts issued to a

participant contain the identifiers committed to a specific task

via partial blind signatures. Therefore, malicious participants

cannot use the receipts obtained from another tasks Tj to earn

rewards for task Ti. For each receipt RRk
received, the server

would invalidate its identifier αk, so the participant can earn

rewards from the task using his/her receipts only once.

Requirement 3. A participant cannot forge receipts or steal
other receipts to earn more rewards. The higher-quality data
a participant submits, the more rewards he/she will earn.
Meanwhile, The server cannot correlate the rewards with the
reports submitted before.

Analytical validation. Since each receipt issued is signed

by the server, it is infeasible to forge a valid receipt. Some

malicious participants may steal receipts to earn more rewards.

However, they cannot submit the stolen receipts without extra

pseudonyms. Although some may want to steal receipts with

higher feedback level to replace their low-feedback receipts,

they are faced with the risk of getting fewer rewards or being

detected by the server. This is because the feedback is encrypt-

ed by pkss, other entities can neither distinguish the positive

feedback from the negative feedback, nor tell which receipt

has higher feedback. Even though higher-feedback receipts

were usurped, the possible inconsistency of reputation level

in submitted receipts will reveal his/her malicious behavior.

As shown in Eq. (2) and Eq. (3), a participant will earn more

rewards if he/she submits higher-quality reports. Due to the

adoption of partial blind signature, it is infeasible to associate

the receipts with the corresponding data reports. Although the

server can link rewards with the receipts but it cannot link

them with the reports submitted before.

Requirement 4. Unauthorized participants cannot forge and
intercept other’s pseudonyms to report data without being
detected. Moreover, malicious participants can be evicted from
a specific task or the whole system.

Analytical validation. If an unauthorized participant Pi
intercepts an approval message which is sent to another

authorized participant Pi′ , he/she cannot pass the check on

H(Pi|BTj |nTj + 1) = h3
i′ , hence cannot obtain the valid

pseudonyms. Since each pseudonym is signed by the TPA, ma-

licious participants cannot forge a valid pseudonym. Therefore,

we can ensure that all sensing reports received by the server

are from the authorized participants.

As described in Section IV-G, with the cooperation of

the TPA, malicious participants can be identified if he/she

contributed low-quality data occasionally for a task. In this

case, all pseudonyms of this malicious participant are revealed

to the server, but the real identity keeps hidden since the

only entity (i.e., TPA) who knows the relationship between

participant pseudonyms and the real identity do not collude



with the server. For the same reason, even though the server

maliciously requests all pseudonyms of a certain user, it

cannot infer the real identity of these pseudonyms, and cannot

correlate pseudonyms used in different tasks. On the other

hand, for very low-reputation participants, they will be evicted

from the system with their identity revealed.

VI. PERFORMANCE EVALUATION

A. Complexity analysis

Let M.M. and M.E. denote modular multiplication and

modular exponentiation in ZN , respectively. GS/SIG and

GS/VER denote the operations for group signature generation

and verification, respectively. H is the hash computation.

Hence, the user’s computation cost due to task blinding and

group signature generation is M.M.+M.E.+GS/SIG. If Pi is

assigned a task with n reports requirement, he/she needs to

obtain n partial blind signatures for receipts, which induces

n(H+2M.M.+2M.E.) overhead. Therefore, for each authorized

participant, the total computation cost incurred in our scheme

is nH+(2n+1)(M.M.+M.E.)+GS/SIG per task. In comparison,

[11] needs more computations due to the extra n partial blind

signatures for report token generation.

At the server, it needs 1GS/VER computation, 2M.E. for

RSA signature verification and M.M.+M.E. cost for blinding

factor removal, respectively. If the server approves the task

request, it needs to perform one hash operation and two RSA

signatures (i.e., H+2M.E.) for the approval message. Next,

nM.E. and 3nM.E. computation cost are incurred to verify

{Tj |L(Pi)}skss and derive n receipts. Correspondingly, the

verification and decryption cost is n(2M.E.+H). Moreover,

3M.E. is required to derive UTj . Therefore, the server’s

computation cost is GS/VER+M.M.+(6n+8)M.E.+(n+1)H for

an assigned task. In contract, more computations are required

in [11] to verify the report token.

For the group manager, 2(H+M.E.) cost is required to derive

τ ji . In the reputation update phase, the group manager needs

to verify the signature and decrypt the feedback for authorized

participants (2M.E.+H).

B. Implementation

Simulation setup. For the trust and reputation model, the

same parameter setting as in [15] is used to assess the report

trust. We assume that there are 100 participants, out of which

there are 10 malicious participants in default. For simplicity,

we consider similar reports have the maximum similarity

1 while opposite reports have the minimum similarity -1.

We varied the reputation/trust threshold from 0.2 to 0.8,

and the number of malicious participants from 10 to 60, in

order to demonstrate the accuracy and robustness of trust and

reputation model. In addition, we varied the number of reports

n from 5 to 25 to show its impacts on the computation cost.

All programs are implemented in Java on Andriod smartphone

(Snapdragon 820) and a laptop (AMD Athlon M320).

Simulation results. To show the accuracy of our trust assess-

ment and the impact of ε, we tested the rates of false positive

FP and false negative FN with different thresholds, and the

corresponding results are shown in Fig. 2. As we can see, when

ε is small, the FP and FN rates are very low (approximately 0).

As ε increases, the FP rate grows while the FN rate remains 0.

This is reasonable as there is a higher possibility that a report

is actually correct but its trust is less than a large ε. On the

contrary, it is hardly possible that the trust of a false report is

more than the large ε. When ε = 0.5, the FP rate is only 0.1

after users take 50 tasks and the corresponding FN rate is 0.
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Fig. 2. The rates of false positive and false negative
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Fig. 3. Reputation of a malicious participant

Fig. 3 reports how a malicious user’s reputation is changed

with task quantity under different number of malicious users

(η). Apparently, as more tasks are taken, the reputation of

a malicious user drops down quickly and finally remains

stable (close to 0) when a few malicious users exist. The

reason is that the reports submitted by malicious users conflict

with those from majority benign users. Correspondingly, it

is highly possible that malicious users will get low report

trust and negative feedback. With more malicious users, the

reputation decreases more slowly, since more untrustworthy

reports support each other. When more than 50% malicious

users exist, untrustworthy reports may dominate and it results

in that malicious users get high report trust and maintain a

high reputation. Therefore, our scheme is robust to malicious

participants as long as more benign participants are involved.

To study the practicality of our proposed scheme, Fig. 4

measures the computation cost in different phases at three

entities. We find that most computations are performed at the

server. The reason is that n partial blind signatures, n RSA

signatures and encryptions are required by the server for a



task. For participants, the time generating the blinded task ID

is negligible in the registration phase. In contrast, the user’s

major computation time also focuses on the report submission

phase, taking only about 440ms for 10 reports.
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Fig. 4. The average running time of performing a task
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Fig. 5. The comparison of running time with varying n

To study the computation performance of our proposed

scheme, we mainly compare PTISense with a state-of-art

solution Li et. al [11]. The result is shown in Fig. 5 (A

denotes assignment, S denotes report submission, and R

denotes remuneration). In the assignment phase, we observe

that the computation time of PTISense keeps stable with n
for both entities, while that of [11] increases as n grows.

This is because a certain number of group signature genera-

tions/verifications are conducted at both entities in PTISense,

independent of n. Nevertheless, n partial blind signatures

are generated for n report tokens. When submitting reports,

PTISense requires comparable running time at user due to the

similar cryptographic operations. However, our scheme takes

the server more time due to the extra encryption of reputation

feedback level, which is the cost of anonymous reputation

management. In the remuneration phase, it clearly shows the

superiority of PTISense at the participant (no cryptographic

cost), while comparable cost is induced at the server for both

schemes. Overall, PTISense can achieve privacy-aware sensing

and incentive with less computation cost, especially at users.

VII. CONCLUSIONS

In this paper, we proposed PTISense to achieve privacy-

aware and trustworthy mobile sensing with fair incentives.

Based on the group signature, (partial) blind signature, we

enable legitimate users to join tasks, contribute data, and earn

rewards without any data linkability. Additionally, by limiting

the number of pseudonyms issued by the TPA, greedy users are

prevented from abusing the privacy-aware system. To further

improve the data trustworthiness, we integrate the anonymous

reputation management into the entire system, based on which

a fair incentive scheme is elaborated to motivate user’s reliable

participation. Security analysis and prototype implementation

demonstrate the security and efficiency of PTISense.
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